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This article examines the problem of compressing a uniformly quantized inde-

pendent and identically distributed (liD) source. We present a new compression
technique, bit-wise arithmetic coding, that assigns t_xed-lengtb codewords to the

quantizer output and uses arithmetic coding to compress the codewords, treating
the codeword bits as independent. We examine the performance of this method and

evaluate the overhead required when used block-adaptively. Simulation results are

presented for Gaussian and Laplacian sources. This new technique could be used

as the entropy coder in a transform or subband coding system.

I. Introduction

Many lossy data compression systems consist of sep-
arate decorrelation and entropy coding stages. In such

schemes, the source data are transformed by some tech-

nique (e.g., discrete cosine transform or subband cod-

ing) with the goal of producing decorrelated components.

Each component is independently scalar quantized and

the quantizer output is losslessly compressed. Frequently
each component is modeled as a sequence of IID random

variables. This model motivates the topic of this article:

block-adaptive compression of uniformly quantized sam-

pies from an IID source.

The traditional approach to the problem of efficiently

encoding the quantizer output symbols is to use a variable-

length code, assigning shorter codewords to the more prob-

able symbols. The well-known Huffman coding technique

gives the optimal such assignment. This method, however,

has some performance limitations. Since each source sam-

ple must be mapped to a codeword of length at least 1, the
rate ofa Huffman code can never be less than 1 bit/sample,

no matter how small the entropy. The redundancy of Huff-

man codes, the difference between rate and entropy, has

been studied and bounded by many researchers, e.g., [4]. A

common approach to reducing the redundancy at low en-

tropy is to combine Huffman coding with zero-runlength

encoding or to encode groups of symbols rather than indi-

vidual symbols. In this article, we present an alternative
solution.

Another problem with Huffman codes is that in block-

adaptive situations there may be significant overhead costs

(the extra symbols required to identify to the decoder the

code being used) [1,5]. Finally, if the buffer overflows (say,
if the source is much less compressible than anticipated),

we may be forced to discard source samples.

With these problems in mind, we introduce a new tech-

nique, bit-wise arithmetic coding. The solution we pro-

pose is to assign a fized-length binary codeword to each

output symbol in such a way that a zero is more likely
than a one in every codeword bit position. We then take

the codewords corresponding to several adjacent quantizer

output symbols and use a binary arithmetic encoder 1 to

1The term "binary encoder" is intended as shorthand for "binary-
input binary-output encoder."
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encode the first codeword bit for each of these symbols.

We repeat this procedure for each group of codeword bits,

treating each group independently from the others. This

technique can be thought of as a simple progressive trans-

mission scheme using an arithmetic coder to independently

encode each level of detail. It turns out that this technique

is often surprisingly efficient, despite the fact that interbit

dependencies are ignored.

In Section II, we define the uniform quantizer parame-

ters. In Section III, we analyze the block-adaptive binary

arithmetic encoder that will be used as part of the bit-

wise arithmetic encoding. We make use of this analysis in

Section IV, where we examine in detail the the bit-wise

arithmetic encoding procedure. We present performance
results in Section IV.C.

II. Uniform Quantizer

For several reasons we limit our investigation to the

uniform quantizer,, not the least of which is simplicity of

implementation and analysis. The uniform quantizer of-

ten outperforms the Lloyd-Max quantizer in terms of rate-

distortion performance (see, e.g., [2]); more important, if
we do not know the source statistics a priori, it may be dif-

ficult to design a more suitable quantizer. The proposed

new method could also be used with a nonuniform quan-

tizer, but the analysis would be less tractable.

A continuous source with probability density function

(pdf) f(x) and variance a2 is quantized by a uniform quan-

tizer having b bits and bin width &r, as in Fig. 1. The

quantizer output is an index i in the range 1 - 25-1 <

i _< 2b-t, identifying which of the 2b intervals contains

the source sample. A source sample lying in [T/-1, T/) has

reconstruction point i6cr, where the quantizer thresholds

1)6a, for Iil < p-1 1, and T2b-t = oo,are Ti = (i+ ._ _ -
T_2b-, = --oo. We could obtain a lower distortion by us-

ing reconstruction points that are equal to the center of

mass [with respect to f(x)] of each interval, but since we
wish to use this quantizer in adaptive situations, we cannot

generally compute this quantity.

Note that the quantizer is asymmetric: There is a re-

construction point at the origin, and since there is an even

number of points, there is an "extra" reconstruction point,

which we arbitrarily choose to place on the positive side.

The obvious alternative, a symmetric quantizer that has

no reconstruction point at the origin, results in poor per-
formance when 6 is large relative to a2.

Let Pi denote tile probability that the quantizer output

is index i, and let di denote the contribution to the mean

square error (MSE) from the interval [T/_I,Ti):

Zi

Pi = j f(x)dx

T,_ l

Zi

di = / (x - io'6)2f(x)dx
T,_ x

(1)

The MSE is equal to _i di. It will be convenient to let P
2b-x

denote the discrete distribution {pi}i=l_2b_l.

In Figs. 2(a) and (b) we plot the resulting rate-

distortion curves (computed analytically) for Gaussian and
Laplacian sources over a wide range of 6. Note that the

curves show optimal performance when the uniform quan-

tizer is used, rather than the theoretical rate-distortion

limit, i.e., the rate shown is the entropy of 7'. The large

range of 6 causes the peculiar loop in the curve: when 62 b

becomes too small relative to _r2, the performance is poor

because the overload bin probabilities become large while

their reconstruction points are too close to zero. This sit-

uation should be easily avoidable in practice, as we would

expect the source range to be finite and known in advance
because of hardware constraints.

In general we will assume

p-i =pi, 0 < i < 2b-1 -2 (2)

Pl_2b-1 = p2b-1 q-p2b-l_ 1 (3)

Pi is nonincreasing in Iil (4)

These conditions are true when f(x) is symmetric about

x = 0 and nonincreasing with Ixl, and 6 is not unreason-

ably small.

For sufficiently large 6, the rate-distortion curve is vir-

tually independent of b, as can be seen in Figs. 2(c) and

(d), where we plot rate-distortion curves for b = 4 and
b = 8 for Gaussian and Laplacian sources. Increasing b has

the effect of increasing the useful range of 6 and lengthen-

ing the useful portion of the rate-distortion curve.

III. Block-Adaptive Binary Arithmetic
Encoding

In this section, we analyze the operation of the block-

adaptive binary arithmetic encoder that will be used as

part of the bit-wise arithmetic encoding procedure.
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A. BinaryArithmeticEncoderOperation
It is well known that a binary arithmetic encoder that

is well-tuned to the source can achieve a rate quite close to

the source entropy. Our goal in this section is to determine

the performance we can expect from an encoder that may
not be well-tuned. For more details on arithmetic coding

see [6,7,8].

A binary arithmetic encoder with parameter P, the an-

ticipated probability of a zero, maps an N-length sequence
of bits s into an interval [l, r) C [0, 1] whose width is

r- l = pNF(1 -- p)N(1-r) (5)

where F is the fraction of bits in s that are zero. Ideally,

we would like to have P = F, but this might not always

be possible.

Example 1. Suppose P = 5/13, s = 01. Initially,

[1, r) = [0, 1). We divide this interval into [0,5/13),

[5/13, 1). Note that this first interval has width of P =

5/13 of the total interval. On receiving sl = 0, we as-

sign [/, r) = [0, 5/13) because the symbol with anticipated
probability of 5/13 was received. Again we divide [0, 5/13)

into [0, 25/169), [25/169, 5/13). After receiving s2 = 1, we

assign [/,r) = [25/169,5/13). Note that this assignment
satisfies Eq. (5). {_

A K-bit output sequence from the encoder maps to

an interval [i2 -K,(i + 1)2 -K) for some 0 < i < 2K - 1.

For our application, since N is known to the decoder, the

encoder must specify the largest interval of this form that

is contained in [l,r). That is, the encoder must use as

few bits as possible to identify to the decoder a sequence

beginning with s.

Example 2. Continuing Example 1, after calculating

[l, r) = [25/169, 5/13), the encoder must find an interval of
the form [i2 -g , (i+ 1)2 -K) such that [i2 -K , (i+ 1)2 -K) C_

[l, r). One such interval is [1/4, 3/8), which corresponds to
output sequence 010 (because this interval is equal to the

set of numbers having binary expansion beginning with

0.010). We will verify in Example 3 that this is in fact the
encoder output sequence.

We continue with the derivation of the encoder rate.

We can write [/,r) = [j2 -J + L2-J,j2 -J + R2 -_) where

0 < L < 1/2 < R < 1 for integers j and J. That is,

[l,r) C_ [j2 -J,(j + 1)2 -J) (6)

for maximum J and some j. The first J bits of the

output sequence map to the interval [j2 -J, (j + 1)2-_),

and the remaining bits correspond to a subinterval of

[L, R). Comparing interval widths in Eq. (6), we find
that 2 -J :> r -- l = pNF(1 -- p)g(1-F), which implies

J >_ Nh(P, F) where

h(P,F) _- -Flog 2 P - (1 - F) log2(l - P)

which is a line tangent to the binary entropy function

7-/(F) at the point F = P. If we are very lucky, then

[3'2-2, (j + 1)2 -J) = [l, r) exactly and we are done encod-
ing, in which case the rate is J/N, so the encoder rate

Rarit h (the number of output bits divided by the number

of input bits) satisfies Rarith >_ h(P, F).

Usually we will not be so lucky, and we must send ad-
ditional bits. In the worst case, L ¢ 0 and R ¢ 1, in

which case we can assign these final bits to be 10n, which

corresponds to [1/2, 1/2 + 2-n-1).

Example 3. Continuing Example 2, we can write

[l,r) = [25/169,5/13) = [0 x 2 -1 + (50/169) x 2-1,0

x 2 -1 + (10/13)2-1), i.e., j = 0, J = 1,L = 50/169 <

1/2 < R = 10/13. The first output bit is 0 (correspond-

ing to j = 0). The remaining bits, 10 '_ (corresponding to

[1/2, 1/2 + 2 -n-l) ) must map to a subinterval of [L, R),
which implies n = 1, so the output sequence is 010. _1

The value n must be sufficiently large that 1/2

+ 2-n-1 _< R, which implies

2 -_-1 < R - 1/2 < R- L = 2JpNF(1 -- p)N(1-F)

making use of Eq. (5) and the fact that 2-J(R- L) = r-l.
Alternatively, we may use 01" instead of 10 '_ if this gives

smaller n. Consequently,

Knowing P, the decoder realizes that [1/4,3/8) C_

[525/2197, 5/13) and that this latter interval corresponds
to input sequence 011. Since the decoder also knows that
N = 2, it takes the first two bits, giving output 01, which

is in fact the encoder input sequence. = VNh(P,F)] - J - 1
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The total number of encoder output bits is J + 1 + n, so
we have

h(P, F) < Rarith < [Nh(P, F)] (7)
-- -- g

which suggests the close approximation

1

R_rith _ h(P, F) + 2--'N" (8)

B. The Effect of Finite Precision

The bound of Eq. (7) is valid when the encoder can per-

form arithmetic with arbitrary precision. In any practical

system, however, we are limited in our ability to represent

the interval endpoints l, r. Whenever l >_ 1/2 or r < 1/2,

we can transmit an output bit and rescale the interval (re-
assign I and r) in the obvious way so that we can make the

most of the available resolution. Failing to do this would

degrade performance and severely limit the length of in-
put sequences that can be encoded. A consequence of this

rescaling is that l E [0, 1/2) and r E (1/2, 1], which means
that at 9 bits of resolution, which is the resolution used for

all simulations and discussions that follow, the values of l

and r used by the encoder are always multiples of 2-10.

The effect of the finite resolution is that P, the antic-

ipated probability of a zero, is almost never represented

exactly. 2 In fact, Pea', the effective value of P, varies as

the algorithm progresses. At each iteration, the interval

between I and r is divided into units of length 2 -l°, and the

number of these units is equal to the resolution available to

represent P. For example, in the worst case, l = 1/2-2 -l°

and r = 1/2 + 2-1°, producing Peer = 1/2. Note that we
can never allow Peer to be zero or one because this would

result in an input symbol having no effect on the inter-

val, making decoding impossible. Unfortunately, bounds

on rate derived from bounds on Peer are uselessly weak.

Because of the finite resolution, the final interval width

is not exactly pNF(1 -- p)N(1-r) as it is for the arbi-

trary precision system, but rather I-Ii:,,=oPeer, IIj:sj=l

(1 - Peer,). Thus, the rate depends not only on P, F,
and the resolution available, but also on the particular in-

put sequence since Peer, depends on sl, s2,...,si-1. The

consequence is that Eq. (8) is a slightly optimistic estimate
of the rate.

Let k equal the number of extra encoded bits result-

ing from the limited resolution, when compared to the se-

quence length predicted by Eq. (8), so that

2 There are some trivial exceptions to this, such as when P = 1/2.

Rarith : h( P, F) "Jc
(k + 1/2)

N

At 9-bit resolution, simulations indicate that k has an ex-

pected value of approximately 0.32 bits, and standard de-

viation of 1.01, nearly independent of P, F, and N. 3 Thus,

as an approximation to the rate we use

Rarith "_ h(P, F) + 0.82/N (9)

for a system with 9-bit resolution. Increasing the resolu-

tion should have the effect of reducing the variance and

expected value of k. Figure 3 gives an example of encoder
performance when P is fixed.

C. Overhead

We would like to use binary arithmetic encoding block-

adaptively to transmit a sequence of N bits, i.e., the en-

coder output sequence is preceded by overhead bits that

identify to the decoder the value of P being used. By

using log s N bits of overhead, we could specify P = F ex-

actly, but by using fewer bits we can exchange accuracy for

lower overhead. In this section, we will explore this trade-
off, showing how to find the optimal number of overhead
bits.

Assume for now that we have a fixed number of over-

head bits m. We select an ordered set of M = 2m probabil-
ities {Pl, P2,.--, PM}, known to the encoder and decoder in

advance, that can be used as values for P. We first show

how to find the optimal assignment of these probability
points.

Given the set {Pa,P2,...,pM}, the encoder would

choose to use the pi that minimizes the rate, i.e., the

Pi that minimizes h(pi,F ). As illustrated in Fig. 4, this

amounts to using line segments to approximate the bi-
nary entropy function. Let ti denote the solution to

h(pi,ti) = h(pi+l,ti) and define A i ix h(pi,ti) - "]-[(ti),

which is the redundancy (additional rate) at this "corner"
point ti. Clearly if we choose the pi's to minimize maxi Ai,

then we minimize the maximum redundancy over all pos-
sible values of F.

Suppose that for some i, we have Ai_ 1 > Ai, as in

Fig. 4. Then by decreasing Pi, we can decrease Ai_ 1 and

increase Ai. From this argument we can see that the as-
signment of the Pi is optimal when Ai is the same for all

3 When P is very close to 0 or 1, the encoder rate is less well behaved.

For example, if P .( 2 -1° , then clearly Peff will always exceed P.

We ignore these extreme cases.
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i. We call this optimal quantity A*(M). Thus, we want

to find M, the minimum number of line segments required

to approximate the binary entropy function to within A*

everywhere.

Given A*(M), we find that Pa = 1 - 2 -A'(M). Given

pi, we find ti by solving

h(pi,ti) - 7t(ti) = A*(M)

Given ti, we find pi+l by solving

h(pi+l,ti) - 7-/(ti) = A*(M)

i.e., we solve the same equation in the other direction. This

procedure can be used to find the optimal set of pi and

ti given A*(M), or in an iterative procedure to compute

A*(M). We can also take advantage of the fact that the
optimal pi must be symmetric about 1/2. In Table 1,

A*(M) is given for several values of M.

To find the relationship between A* and M for large M,

let w(p) denote the spacing between adjacent probability

points in the neighborhood of p so that the "corner" point

is t _ p + w/2. At this point,

W 2

a" h(p,p + w/2) - + w/2) Sp(1- p)In 2

using the first three terms of the Taylor series expansion

of'H(p). Now 1/w(p) is the density of probability points,

SO

1 1

/1 1 /
0 0

thus for large M,

( 7r2 )M-2A*(M)_ _ (10)

In Fig. 5 we show the exact and approximate relationship
between M and A*.

The encoding operation is straightforward. The en-
coder computes F by counting the number of zeros in the

input sequence. The largest integer I satisfying Q-1 < F

gives the optimal Pt, which is the parameter used in the

encoding procedure. The encoder uses m bits to identify I,

followed by the arithmetic encoder output sequence. This

procedure guarantees that

h(pl, F) <_7-l(F) + A*(2 m)

The rate (including overhead) required to block-

adaptively transmit a sequence of N bits is approximately

7-I(F) + m/N + A'(2 m) + 0.82/N (11)

where "H(F) comes from the source uncertainty; rn/N
comes from the m overhead bits used to identify pI;

A*(2 m) is a result of using m bits to specify F approx-
imately instead of using log 2 N bits to specify F ex-

actly (this amounts to a worst-case assumption); and

0.82/N comes from the finite resolution of the encoder

[see Eq. (9)].

Given N, the optimal number of overhead bits is

m'(N) = nfin-1 {7-/(F) + 0.82/N + A'(2") + re�N}

= m_n-l{A*(2 "_) + re�N} (12)

which is tabulated in Table 2.

Using Eqs. (10) and (12), we find that for large rn, the

optimal value of m satisfies

0 1 __ 7r22_2_2r n
0 = _--_[A'(2") + m/N] _ -_

which gives

1

m*(N) ,_ _ log 2 N + log 2 a" - 1
(13)

and

( ) 1 (14)A* 2m'(u) _ 2Nln2
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Substituting into Eq. (11), we find that the rate of a block-

adaptive binary arithmetic encoder, including overhead, is

approximately

,[1 1]7-/(F) + _ _ log s N + 0.18 + log 2 7r + 2-_n2 (15)

IV. Bit-Wise Arithmetic Coding

A. Operation of the Bit-Wise Arithmetic Encoder

We now use the results of Section III to analyze the per-
formance of bit-wise arithmetic encoding. First we outline

the encoding procedure.

Each quantizer output symbol is mapped to a b-bit

codeword. The first bit indicates the sign of the quantizer

reconstruction point. 4 The remaining bits are assigned

to quantizer levels in increasing lexicographic order as we

move away from the origin. Figure 6 illustrates this map-

ping for b = 4. Because of Eqs. (2)-(4), a zero will be more
likely than a one in every bit position.

Codewords corresponding to N adjacent source sam-
ples are grouped together. The N sign bits of the code-

word sequence are encoded using the block-adaptive bi-

nary arithmetic encoder analyzed in Section III. Then

the N next-most-significant bits are encoded, and so on.

This can be viewed as a simple progressive transmission

system--each subsequent codeword bit gives a further level

of detail about the source. Each bit sequence is encoded

independently--at the ith stage the arithmetic coder cal-

culates (approximately) the unconditional probability that
the ith codeword bit is a zero.

The obvious loss is that we lose the benefit of interbit

dependency. For example, the probability that the second

bit is a zero is not generally independent of the value of

the first bit, though the encoding procedure acts as if it

were. Huffman coding does not suffer from this loss, which
we examine in Section IV.B.

The advantage is that for many practical sources, this

technique has lower redundancy than Huffman coding, be-
cause the arithmetic coder is not required to produce an

output symbol for every input symbol. Also this scheme

is relatively simple s and has some advantages in terms
of overhead: because the number of codewords is 2b, the

4 Or, to be precise, the first bit indicates whether the reconstruction

point is positive.

5 To the extent that a binary arithmetic coder is simple.

overhead of block-adaptive Huffman coding increases ex-
ponentially in b unless we are able to cleverly exploit ad-

ditional information about the source [5]. By contrast,

the overhead required for bit-wise arithmetic encoding in-
creases linearly in b because the codeword bits are treated

independently.

Another advantage is that this technique gives us a sim-
ple means of handling situations where we are rate con-

strained (or equivalently, buffer-constrained): We simply
encode the blocks of N bits until the allocated rate is ex-

hausted (or the buffer is full). The distortion is automati-

cally reduced for "more compressible" sources--when the

most significant bits can be efficiently encoded, we are able

to send additional (less-significant) bits, so the encoder

resolution increases automatically. This would mean, for

example, that a block having 6-bit resolution might be
followed by a block having only 8-bit resolution. The ad-

vantage is that we hope to prevent any sample from having
zero-bit resolution.

The obvious question is whether the gains offset the

losses. Given 6, b, and f(z), we can use Eq. (1) to compute
P, the distribution on the quantizer output symbols, and

use this result to compute 7ri, the probability that the ith
bit is a zero. For example, for b = 4,

7r 2

71"3

71"4

[i'IIII'1°°°°°°°i]0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 1 1 0 0 1 1 1 1 0 0 1 1 0

1 0 1 0 1 0 1 1 0 1 0 1 0 1

[piTlI,1111111illpilP-6 1 2 2 2 1 0 0 0 Pl
x = 1 2 1 0 1 2 1 0

1 1 1 1 1 1 1 1

using the symmetries of the Pi &escribed in Section II. It

turns out that _rl = (1 + po)/2, _b = 7rl - p2b-,. The
rate obtained is (assuming for the moment that we have

an idealized system where we may neglect overhead)

b

i---I
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For the Gaussian and Laplacian sources, this result can

be compared to Huffman coding in Figs. 7 and 8. Over

the useful range of the quantizer, the rate of the bit-wise

arithmetic coding scheme is quite close to the entropy.

B. The Redundancy of Bit-Wise Transmission

We have already examined some of the sources that con-

tribute to the rate of bit-wise arithmetic encoding: over-

head bits, finite precision arithmetic, and the use of ap-

proximate rather than exact representation of F. We now

examine the most obvious redundancy component: the

added rate that results from treating each bit indepen-

dently.

Let _i be the random variable that is equal to the value

of the ith bit of the codeword corresponding to the quan-

tizer output. The source entropy is then the entropy of

the _,, H(fllfl2'" fib), but the independent encoding of

the bits results in a rate of H(¢_l) + H(¢_) + ... H(C_b).

Thus, the redundancy is

b

i----1

b

E H(fli) - [H(fll) + H(D2]D_)
i=1

+""" H(_ 1¢_,-1D,-2" ' • Da)]

b

: E [(]_i, _i-1]_i--2 "'" ]31) (16)

i=2

where I is the mutual information function. So, for ex-

ample, if b = 2, the redundancy is equal to the mutual

information between fll and f12.

Of course, _ > 0, with equality if and only if the _i

are independent. This bound is tight--zero redundancy

occurs, for example, if the Pi are distributed according to

the two-sided exponential distribution Pi = a01il, which

is a distribution suggested in [3] as a model for certain

reM-world sources. The exponential distribution is close

to the distribution obtained for a Laplacian source, which

explains why bit-wise arithmetic coding works well for this
source.

A greedy assignment of bits results in almost exactly

the same mapping from quantizer output symbol to code-

word. In the first bit position, assign a 0 to the 2b-1

indices having the largest Pi, and a 1 to the others. In the

second bit position, among the quantizer output indices

having the same value in the first bit position, assign a 0
to the 2b-_ indices having the largest pi, and so on. In

this manner, the sign bit is the last codeword bit.

It should be noted that other codeword assignments, for

example, assigning codewords so that Hamming weight is

strictly nonincreasing in til, can sometimes give lower re-

dundancy. Unless the distribution of the Pi is known a

priori, we cannot in general determine the optimal assign-

ment. The codeword assignment proposed here has the

advantages of symmetry and usefulness from a progressive

transmission or buffer-constrained standpoint.

If we relax the assumptions of Eqs. (2)-(4), then the

pathological case P0 = P2b-_ = 1/2 gives the maximum

possible redundancy of "_max : b- 1. We would like

to have a tight upper bound on redundancy when we

maintain Eqs. (2)-(4). For b = 2, it is simple to ver-

ify that the maximum redundancy occurs when P =

{P-I,Po,Pl,P2} = {1/3,1/3,1/3,0}, which gives redun-

dancy of log s 3 - 4/3 _ 0.252. For larger b, it becomes
more difficult to determine analytically what distribution

gives maximum redundancy.

Example 4. If b = 3, the restrictions of Eqs. (2)-(4)

imply that any valid distribution P can be written as a

convex combination of the (mostly) uniform distributions

P_={0,0,0,1,0,0,0,0}

792 = (0, 0, 1/3, 1/3, 1/3, 0, 0, 0}

7)3 = {0, 1/5, 1/5, 1/5, 1/5, 1/5, O,O}

P4 = {1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 0}

P5 = {1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/14, 1/14}

Thus, we wish to maximize the redundancy function of

Eq. (16) over the convex hull of {Pl, P2, P3, 7)4, Ps }- Sim-
ulations suggest that the maximum occurs at Pa, which

gives redundancy of 2/5[5 log s 5 - 3 log 2 3 - 6] ,_ 0.342.

Unfortunately, 7_ is not convex tA in P, so we are not cer-

tain that for arbitrary b maximum redundancy occurs for
some uniform distribution.

We conjecture that for any b, the maximum redundancy

subject to Eqs. (2)-(4) occurs for some uniform f(x). If
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this conjecture is correct, then to find a bound on redun-

dancy we examine redundancy in the limit b ---+ec. Con-

sider what happens when the quantizer range is [-1/2, 1/2]

and f(x) is uniform over [-W/2, W/2], for some 0 < W <

1, as in Fig. 9. The lines and spaces in the figure replace

the codeword assignment matrix: the lines denote a one ill

the corresponding bit position and the gaps denote a zero

(compare to Fig. 6). Note that in the limit the codeword
assignment is symmetric about x = 0.

For a large fixed b, 7_, the redundancy for a uniform

distribution is

7U < 7_(W*), we can find a uniform f(x) and finite b

producing redundancy R' or higher. We conjecture that

in general

OO *

7?. < 7_ (W) _ 0.34544

is a tight upper bound for any pdf producing P satisfy-

ing Eqs. (2)-(4). It is interesting that this bound is in-
dependent of b, while without any restrictions on 7) the

redundancy can be as large as b- 1.

b b

T_b(iv) = _-_ _(Tri) - H(P) : _ {n(zri) - I} -log., W
i=1 i=1

using the fact that H(7 )) = log2(W2 b) = b + log 2W,
which is a consequence of the uniform distribution. Given

i, 1 - lri is equal to the sum of the lengths of the dark-

ened line segment portions divided by W. We ignore

the sign bit because 7rsign = 1/2, so this bit makes no

contribution to the redundancy in the limit. Exanfin-

ing Fig. 9, we can see that the interval [-W/2, W/2]

will always contain either an integer number of line seg-

ments or an integer number of gaps. Thus, either r, or

1 - 7ri will be equal to [1/2 + W2i-lj/(W2i), so 7-/(_ri) =

"H ([1/2 + W2'-lJ/W2 i) and in the limit the redundancy
is

OO

_,7 (w) = -log_ w - y_ y,(w) (17)
i=1

where

fi(W) zx 1-- 7-l ( [1/2 + W2i-lj )iV2_:

Note that we can limit our analysis to the case where

W > 1/2 without loss of generality, because T_(W/2 ") =

7¢._(W) for any integer n. Figure 10 shows T_(W), and
several of the fi are shown in Fig. 11. If W = j/2 '_ for in-

teger j and n, then only the first n terms in the summation

of Eq. (17) are nonzero.

The function 7_(W) attains a maximum of approx-

imately 0.34544 near iV* _ 0.610711. It is difficult to
determine an analytic expression for W* or TZ_(W*),

in part because the first derivative of T_(W) is discon-

tinuous at infinitely many points in [1/2, 1]. Given any

C. Performance

Including all of the overhead effects, using Eqs. (11),

(13), and (14), the rate of the bit-wise arithmetic coder is

approximately

Rbit-arith _,_H(/31/_2'"'/_b) + T_

m*(N) + 0.82]+ _ [A" (2m'(N)) + N

b [ 1 1+_- 2_n_n2 + 0.18 + _ log2 N

H(/3a/3_.../h)+_+ _ 2.55

+ log 2 7r]

' ]+ _ log 2 N

(18)

In Fig. 12, we plot theoretical and simulated rate-

distortion curves for the bit-wise arithmetic coder applied

to Gaussian and Laptacian sources. Bit-wise arithmetic

coding performs particularly well on the Laplacian source.
Note that the increase in rate when we decrease N from

512 to 256 is rather small. This is not surprising con-

sidering Eq. (18). The use of smaller N implies faster

adaptability to a nonstationary source, and also gives ad-
vantages when using a small buffer.

D. Possible Refinements

There are a few tricks that we might use to further

reduce the rate in a practical system:
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(1) The arithmetic encoder could adaptively estimate
the probability rather than simply count the number

of zeros in a sequence. This might improve adaptiv-

ity to nonstationary sources, in addition to reducing
overhead.

(2) The relative frequency of zeros in a sequence, F,
must be a multiple of l/N, so not all "corners" (i.e.,

the ti in Fig. 4) can be reached. Keeping this fact
in mind, we could adjust the Pi values to obtain

a slight improvement in performance: lower A*(m)

and perhaps lower m*(N). The rate reduction would

probably be minuscule except at very small N.

(3) Additional savings may be obtained by considering
the variations in rate due to the finite precision of

the encoder. When F is near a corner, we could

(time and complexity permitting) encode the se-

quence using the two nearest Pi to see which pro-
duces a shorter sequence.

(4) We could make the Pi more dense in the regions that

are more probable. For example, if Eqs. (2)-(4) are

satisfied, then the probability of a zero will always

be higher than the probability of a one, so we could

require most of the pi to be less than 1/2.

(5) Since the decoder knows N, tl-1, and Q before it

decodes, it knows that the sequence must contain

between [Ntl-a] and [NQJ zeros. In the current

implementation, the decoder does not explicitly ex-

ploit this information. We could update P as we

encode/decode, taking into account the number of
zeros that must remain in the sequence, "like count-

ing cards in Vegas," comments Sam Dolinar.

(6)

(7)

(8)

We might also get a slight improvement by combin-

ing the overhead of blocks, thus not requiring that

M, the number of pi, be a power of two.

We could require that pl = 0, so that if a block

consisted of the all-zeros sequence, we could encode

the entire sequence simply by using the m overhead

bits to identify P = pl.

It might be convenient to keep track of the encoder
output sequence length during the encoder opera-

tion, and send the data unencoded if the length ex-

ceeds N. This corresponds to forcing one of the pz to

be equal to 1/2. Once this happens, we might as-

sume that all remaining bit positions are sufficiently

random so that we are better off sending them unen-

coded and saving the overhead. This reflects the con-

ventional wisdom that for many real-world sources,

quantized samples are often compressible only in the

most-significant bits.

V. Conclusion

The bit-wise arithmetic encoding technique provides a

simple method for data compression. The independent
treatment of the codeword bits provides its main assets:

The technique is simple, it can be used in progressive
transmission or as a means of alleviating buffer overflow

problems, and it has low overhead that increases linearly

in the number of quantizer bits rather than exponentially.
For the Gaussian and Laplacian sources, the rate is quite

close to the entropy. The independent treatment of bits

can also be its greatest liability--for sources where the
codeword bits are highly correlated, the redundancy can

be substantial. As with any data compression method,

the usefulness of this technique ultimately depends on the

source to be compressed.
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Table 1. The optimal relationship
between M and _.

Table 2. The optimal relationship between
block length N and overhead bits m.

M A'(M) N m*(N)

20 1.0 1 0

21 0.32193 [2, 4] 1

23 0.093506 [5, 14] 2

23 0.025407 [15, 53] 3

24 0.0066389 [54,202] 4

25 0.0016980 [203,806] 5

26 0.00045745 [807, 2861] 6

27 0.00010800 [2862, 12358] 7

28 0.000027077
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